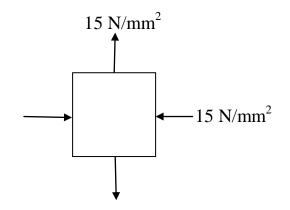
Code: CE4T3

II B.Tech - II Semester–Regular/Supplementary Examinations–April 2018

MECHANICS OF SOLIDS-II (CIVIL ENGINEERING)

Duration: 3 hours

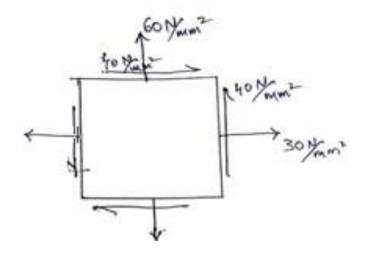

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks $11 \ge 22$

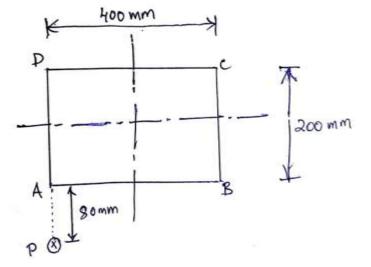
- 1. a) State about Double integration method.
 - b) Using double integration method, find the deflection at free end of cantilever with span L and udl w/unit length acting throughout the beam. Assume EI as a flexural rigidity.
 - c) What do you understand by Principal planes and principal stresses?
 - d) What is Mohr's circle, how is it used?
 - e) What is the maximum shear stress at any point in a thin cylinder, subjected to internal fluid pressure?
 - f) Explain Maximum principal stress theory?
 - g) Explain about failure of a long column?
 - h) What do you understand by slenderness ratio?
 - i) What do you understand by shear centre?
 - j) Define and explain the term unsymmetrical bending?

k) Draw the Mohr circle for the following state of stress at a point and find the principal stresses?



PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$


- 2. a) A beam 4 meters long, simply supported at its ends, carries a point load W at its centre. If the slope at the ends of the beam is not exceeding 1⁰, find the deflection at the centre of the beam.
 8 M
 - b) Determine (i) slope at the left support ,(ii) deflection under the load and (iii)maximum deflection of a simply supported beam of length 5m,which is carrying a point load of 5 KN at a distance of 3m from the left end .Take $E=2x10^5$ N/mm² and $I=1x10^8$ mm⁴. 8 M

- 3. a) At a point within a body subjected to two mutually perpendicular directions ,the stresses are 60 N/mm² tensile and 30 N/mm² tensile. Each of the above stresses is accompanied by a shear stress of 40 N/mm². Determine normal stress and shear stress.
 8 M
 - b) Resultant stress on an oblique plane inclined at an angle of 45° with the axis of minor tensile stress. 8 M

- 4. a) Calculate (i) the change in diameter (ii) change in length and (iii) change in volume of a thin cylindrical shell of 100cm diameter ,1cm thick and 5m long when subjected to internal pressure of 3 N/mm². Take the value of $E=2x10^5$ N/mm² and Poisson's ratio v=0.3. 12 M
 - b) Explain minimum principal stress theory. 4 M

- 5. a) A column of timber section 15cm x 20cm is 6m long with both ends being fixed. If the Young's modulus for timber =17.5KN/mm²,determine:
 - (i) Crippling load and 4 M
 - (ii) Safe load for the column if factor of safety=3. 4 M
 - b) What are the assumptions and limitations of Euler's theory? Derive an expression for Eulers theory when both ends are fixed.
 8 M
- 6. Find the stress distribution at section ABCD as shown in the figure. If p=64KN. Locate line of zero stress. 16 M

